Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes.
نویسندگان
چکیده
We sought to determine whether early nerve damage may be detected by corneal confocal microscopy (CCM), skin biopsy, and neurophysiological tests in 86 recently diagnosed type 2 diabetic patients compared with 48 control subjects. CCM analysis using novel algorithms to reconstruct nerve fiber images was performed for all fibers and major nerve fibers (MNF) only. Intraepidermal nerve fiber density (IENFD) was assessed in skin specimens. Neurophysiological measures included nerve conduction studies (NCS), quantitative sensory testing (QST), and cardiovascular autonomic function tests (AFTs). Compared with control subjects, diabetic patients exhibited significantly reduced corneal nerve fiber length (CNFL-MNF), fiber density (CNFD-MNF), branch density (CNBD-MNF), connecting points (CNCP), IENFD, NCS, QST, and AFTs. CNFD-MNF and IENFD were reduced below the 2.5th percentile in 21% and 14% of the diabetic patients, respectively. However, the vast majority of patients with abnormal CNFD showed concomitantly normal IENFD and vice versa. In conclusion, CCM and skin biopsy both detect nerve fiber loss in recently diagnosed type 2 diabetes, but largely in different patients, suggesting a patchy manifestation pattern of small fiber neuropathy. Concomitant NCS impairment points to an early parallel involvement of small and large fibers, but the precise temporal sequence should be clarified in prospective studies.
منابع مشابه
Spatial analysis improves the detection of early corneal nerve fiber loss in patients with recently diagnosed type 2 diabetes
Corneal confocal microscopy (CCM) has revealed reduced corneal nerve fiber (CNF) length and density (CNFL, CNFD) in patients with diabetes, but the spatial pattern of CNF loss has not been studied. We aimed to determine whether spatial analysis of the distribution of corneal nerve branching points (CNBPs) may contribute to improving the detection of early CNF loss. We hypothesized that early CN...
متن کاملSmall Nerve Fiber Quantification in the Diagnosis of Diabetic Sensorimotor Polyneuropathy: Comparing Corneal Confocal Microscopy With Intraepidermal Nerve Fiber Density
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker...
متن کاملCorneal Confocal Microscopy Identifies Small-Fiber Neuropathy in Subjects With Impaired Glucose Tolerance Who Develop Type 2 Diabetes
OBJECTIVE Impaired glucose tolerance (IGT) through to type 2 diabetes is thought to confer a continuum of risk for neuropathy. Identification of subjects at high risk of developing type 2 diabetes and, hence, worsening neuropathy would allow identification and risk stratification for more aggressive management. RESEARCH DESIGN AND METHODS Thirty subjects with IGT and 17 age-matched control su...
متن کاملCorneal Confocal Microscopy Detects Early Nerve Regeneration in Diabetic Neuropathy After Simultaneous Pancreas and Kidney Transplantation
Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term stud...
متن کاملCorneal confocal microscopy to assess diabetic neuropathy: an eye on the foot.
Accurate detection and quantification of human diabetic peripheral neuropathy are important to define at-risk patients, anticipate deterioration, and assess new therapies. Easily performed clinical techniques such as neuro-logical examination, assessment of vibration perception or insensitivity to the 10 g monofilament only assess advanced neuropathy, i.e., the at-risk foot. Techniques that ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 63 7 شماره
صفحات -
تاریخ انتشار 2014